5 research outputs found

    Sign Language Fingerspelling Classification from Depth and Color Images using a Deep Belief Network

    Full text link
    Automatic sign language recognition is an open problem that has received a lot of attention recently, not only because of its usefulness to signers, but also due to the numerous applications a sign classifier can have. In this article, we present a new feature extraction technique for hand pose recognition using depth and intensity images captured from a Microsoft Kinect sensor. We applied our technique to American Sign Language fingerspelling classification using a Deep Belief Network, for which our feature extraction technique is tailored. We evaluated our results on a multi-user data set with two scenarios: one with all known users and one with an unseen user. We achieved 99% recall and precision on the first, and 77% recall and 79% precision on the second. Our method is also capable of real-time sign classification and is adaptive to any environment or lightning intensity.Comment: Published in 2014 Canadian Conference on Computer and Robot Visio

    New Bounds for Facial Nonrepetitive Colouring

    Full text link
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22.Comment: 16 pages, 5 figure

    NAT Traversal in Peer-to-Peer Architecture

    Get PDF
    Peer-to-peer networks are well known for file sharing between multiple computers. They establish virtual tunnels between computers to transfer data, but NATs makes it harder. A NAT, Network Address Translation, is a process which transforms private IP addresses, such as 192.168.2.1, into public addresses, such as 203.0.113.40. The idea is that multiple private addresses can hide behind a single public address and thus virtually enlarge the number of allocable public IP addresses. When an application in the local network establishes a connection to Internet, the packet passes through the NAT which adjusts the IP header and maps an external port to the computer which sent the request. When packets are received from the Internet by the NAT, they are forwarded to the internal host which is mapped to the port on which the packet was received, or dropped if no mapping exists. In this paper, we will introduce you to NAT and P2P, we will discuss the numerous ways NATs use to translate private IP addresses into public ones, we will discuss known techniques used to fix the problem and we will also present how popular peer-to-peer programs bypass NATs. This paper is written so anybody with a reasonable knowledge of networking would grasp the essentials. It is important to keep in mind that the traversal methods presented in this document work for UDP and TCP and require no manual configuration of the Network Address Translator itself

    New bounds for facial nonrepetitive colouring

    No full text
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22
    corecore